Complex ZnO nanotree arrays with tunable top, stem and branch structures.

نویسندگان

  • Fenghua Zhao
  • Jian-Guo Zheng
  • Xianfeng Yang
  • Xiuyan Li
  • Jing Wang
  • Fuli Zhao
  • Kam Sing Wong
  • Chaolun Liang
  • Mingmei Wu
چکیده

Hierarchical tree-, mushroom- and cockscomb-like ZnO arrays with increasing branching order and complexities have been grown in situ on cheap zinc plates by a simple hydrothermal oxidation approach. Their morphology, crystal structure and orientation relationship are characterized by powder X-ray diffraction, scanning electron microscopy (SEM) and cross-sectional high-resolution transmission electron microscopy (HRTEM). The wurtzite ZnO arrays, growing mainly in the [0001] direction, show a special orientation relationship between the stem and the branch as well as a novel stem-branch boundary which might be attributed to the least mismatch between [symbol: see text] and (0002) lattice planes. The co-solvent ethylenediamine (en) was used to control the morphology and complexing of these complex ZnO nanostructures. Correspondingly, the physical properties of ZnO nanostructure assembly arrays were tuned and a stronger UV emission was observed with negligible emissions in the visible range, indicating the highly crystalline features of the complex ZnO micro-/nanostructured materials.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Photoelectrochemical water splitting strongly enhanced in fast-grown ZnO nanotree and nanocluster structures† †Electronic supplementary information (ESI) available. See DOI: 10.1039/c6ta02788a Click here for additional data file.

Fig. S1 XRD patterns of ZnO NR, NC and NT arrays deposited on ITO substrates corresponding to Figs. 1i, 1iv and 2a, respectively, indexed according to the hexagonal wurtzite structure (JCPDS No. 36-1451). The peaks associated with In 2 O 3 from ITO substrates are labeled for clarity.

متن کامل

Investigating structural, optical and photocatalytic properties of hydrothermally synthesized ZnO nanorod arrays with various aspect ratios

ZnO nanorods with various aspect ratios (by changing the time of growth between 0-240 min) were synthesized using hydrothermal method and were investigated using XRD, SEM, UV–Vis and PL. It was found that growth time is directly coupled with the length, orientation and aspect ratio of the nanorod arrays. The optical transmittance of the NR arrays indicated a regular decrement of average transmi...

متن کامل

Improved dye-sensitized solar cell with a ZnO nanotree photoanode by hydrothermal method

This study investigated the influence of ZnO nanostructures on dye adsorption to increase the photovoltaic conversion efficiency of solar cells. ZnO nanostructures were grown in both tree-like and nanorod (NR) arrays on an AZO/FTO film structure by using a hydrothermal method. The results were observed in detail using X-ray diffraction, field-emission scanning electron microscopy (FE-SEM), UV-v...

متن کامل

Laser Modified ZnO/CdSSe Core-Shell Nanowire Arrays for Micro-Steganography and Improved Photoconduction

Arrays of ZnO/CdSSe core/shell nanowires with shells of tunable band gaps represent a class of interesting hybrid nanomaterials with unique optical and photoelectrical properties due to their type II heterojunctions and chemical compositions. In this work, we demonstrate that direct focused laser beam irradiation is able to achieve localized modification of the hybrid structure and chemical com...

متن کامل

A nanotree-like CdS/ZnO nanocomposite with spatially branched hierarchical structure for photocatalytic fine-chemical synthesis.

Branched hierarchical CdS/ZnO nanocomposites have been synthesized for application toward photocatalytic fine-chemical synthesis. Growing ZnO nanorods on the surface of CdS nanowires boosts the light harvesting efficiency and charge separation as well as fast charge transport and collection. A Z-scheme mechanism under artificial solar light is also proposed.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Nanoscale

دوره 2 9  شماره 

صفحات  -

تاریخ انتشار 2010